Mendeleev Commun., 2007, 17, 119-121

Mendeleev Communications

New simple synthesis of *N*-acylpyrazolidines and *N*-arylsulfonyl-2-pyrazolines

Alexander V. Shevtsov,^{a,†} Alexander A. Kislukhin,^{a,†} Vladimir V. Kuznetsov,^a Vera Yu. Petukhova,^a Vladimir A. Maslennikov,^{a,†} Alexandra O. Borissova,^b Konstantin A. Lyssenko^{b,†} and Nina N. Makhova*^a

^a N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 495 135 5328; e-mail: mnn@ioc.ac.ru

DOI: 10.1016/j.mencom.2007.03.023

New simple methods for the synthesis of 1-mono- and 1,2-diacylpyrazolidines as well as 1-arylsulfonyl-2-pyrazolines, based on the interaction of 1,5-diazabicylo[3.1.0]hexanes with acyl- or arylsulfonyl chlorides, have been proposed.

Pyrazolidine derivatives exhibit a broad spectrum of biological activity. The pyrazolidine ring is a constituent part of 1,5-diazabicyclo[3.3.0]octan-2-one derivatives – γ -lactam antibacterial agents against a variety of clinically important pathogens. 1,2 1-Acylpyrazolidines are used as initial compounds in the synthesis of inhibitors of the tumor necrosis factor α (TNF- α).^{3,4} Cathepsin C inhibitors containing a 1-acylpyrazolidine fragment have been recently synthesised.⁵ However, in contrast to pyrazoles and pyrazolines for which the methods of synthesis are well developed,⁶ pyrazolidines are more difficult to achieve. Therefore, a search of new preparative methods for their synthesis remains desirable. Classical approaches to the synthesis of pyrazolidines are based on the reduction of pyrazolines⁷ or pyrazole salts, ^{7,8} as well as on the interaction of hydrazine with 1,3-dibromides^{9,10} or phenylhydrazones with electrondeficient alkenes. 11 Two 1,2-bis(phenylcarbamoyl)pyrazolidines were obtained in small yields (5-31%) by the interaction of 6-monoalkyl-1,5-diazabicyclo[3.1.0]hexanes with phenylisocyanate.¹² In the alkylation of analogous bicyclic structures with alkyl halides under phase-transfer conditions, the reaction products were 1-alkyl-2-pyrazolines.¹³

Recently,¹⁴ we found that 1-(arylacetyl)pyrazolidines **3** were formed under the interaction of 1,5-diazabicyclo[3.1.0]hexanes **1** with arylketenes **2** at -30 °C in diethyl ether and at 20 °C in benzene (Scheme 1). Arylketenes **2** were generated from arylacetyl chlorides **4** and TEA. Here, we studied a new approach to the preparation of pyrazolidine derivatives on the basis of readily accessible 1,5-diazabicyclo[3.1.0]hexanes **1**. (The synthesis of compounds **1** is based on the action of alkaline metal hypochlorites on an equimolar mixture of a carbonyl compound and 1,3-diaminopropane).¹⁵

The following mechanism was proposed¹⁴ for the formation of 1-(arylacetyl)pyrazolidines 3. At the first stage, zwitterion intermediate 5 is formed. Then, the C–N bond cleavage is performed with the formation of another zwitterion intermediate 6. The enolate ion in this intermediate is a rather strong base, which can remove the HCl molecule from triethyl-

A.A.K. and V.A.M. are the students of the HCC RAS.

K.A.L. is a former student of the HCC RAS (1991–1995), now a lecturer at the HCC RAS.

ArrCHCOCI + Et₃N

4

$$R^2$$
 R^1
 R^1
 R^2
 R^2
 R^1
 R^2
 R^2

ammonium chloride giving salts 7, the analogues of α -halogen alkylamines.¹⁶ The latter are hydrolysed to corresponding pyrazolidines 3 and carbonyl compounds during the isolation by column chromatography on SiO₂ (Scheme 1).

The assumed mechanism of the transformation of compounds 1 (Scheme 1) could be formally considered as a succession of acylation and hydrolysis steps. If that is true, this reaction could be modified by a removal of the conjugated anion in intermediate 6 using acyl chlorides instead of ketenes as acylating reagents. To examine this assumption, 1,5-diazabicyclo[3.1.0]-hexane 1a was treated with equimolar amounts of arylacetyl chlorides 4a,e in the methylene chloride–aqueous NaOH solution two-phase system at room temperature. Indeed, under these conditions, compound 1a was transformed to pyrazolidine derivatives; however, desirable 1-(arylacetyl)pyrazolidines 3a,e

^c A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 495 135 5085; e-mail: kostya@xrlab.ineos.ac.ru

 $^{^{\}dagger}$ A.V.S. is a former student of the Higher Chemical College (HCC) of the RAS (1998–2003).

were obtained in insignificant amounts (TLC control) and the main reaction products were 1,2-bis(arylacetyl)pyrazolidines **8a**,**e**, which were isolated in low yields. Evidently, formed compounds **3a**,**e** entered the acylation reaction more quickly than initial bicycle **1a**. The use of two equivalents of arylacetyl chlorides **4a**,**e** resulted in compounds **8a**,**e** in 53–91% yields. For the preparation of 1-(arylacetyl)pyrazolidines **3a**–**d**, the preferable conditions proved to be: a double excess of initial bicycles **1**, a temperature of –15 °C and toluene as a solvent (Scheme 2).[‡]

To extend a scope of such an approach over the synthesis of 1,2-disubstituted pyrazolidines, different aroyl chlorides **4f-h**, as well as arylsulfonyl chlorides **9a-c**, were used in the reaction with 1,5-diazabicyclo[3.1.0]hexanes **1** in the presence of inorganic bases in the methylene chloride—water system at room temperature. In all cases, a 2:1 molar ratio of compounds **4f-h** or **9a-c** to initial compounds **1** was used. Reactions with aroyl chlorides resulted in expected 1,2-bis(aroyl)pyrazolidines **8f-h** with preparative yields. Another result was obtained in reactions with arylsulfonyl chlorides **9a-c**: 1-arylsulfonylpyrazolines **10a-c** were isolated as reaction products (Scheme 3).[‡] It could be assumed that, at the first step, the reaction would proceed by

 ‡ All new compounds exhibited satisfactory elemental analysis. IR spectra were measured on a UR-20 spectrometer; 1H and ^{13}C NMR spectra were recorded on Bruker WM-250 (250 MHz) and Bruker AM-300 (75.5 MHz) spectrometers, respectively (CDCl $_3$ was used as an internal standard). Mass spectra were measured on a Finnigan MAT INCOS-50 instrument. TLC was carried out on Silufol UV-254 plates. Isolation of new compounds was performed on Kieselgel 60 F_{254} (Merk). Melting points were measured on a Gallenkamp instrument (Sanyo).

1-[(4-Fluorophenyl)acetyl]pyrazolidine **3a**: yield 52% (from **1c**), $R_{\rm f}$ 0.29 [ethyl acetate–n-heptane, 1:1 (v/v)], mp 76–77.5 °C (lit., ¹⁴ mp 76–77 °C). 1-[(4-Chlorophenyl)acetyl]pyrazolidine **3b**: yield 41% (from **1a**), mp 104–105 °C (lit., ¹⁴ mp 104–105 °C).

1-[(4-Bromophenyl)acetyl]pyrazolidine 3c: yield 45% (from 1c), mp 103–104 °C (lit., 14 mp 102–104 °C).

1-[(2,4-Dinitrophenyl)acetyl]pyrazolidine **3d**: yield 37% (from **1b**), mp 118–120 °C (lit., 14 mp 119–125 °C).

1,2-Bis[(4-fluorophenyl)acetyl]pirazolidine **8a**: yield 53% (from **1a**), $R_{\rm f}$ 0.34 (EtOAc), mp 127–128 °C. ¹H NMR (CDCl₃) δ: 1.87 (q, 2H, CCH₂C, ²J 18 Hz, ³J 9 Hz), 2.67 (m, 2H, NCH₂), 3.63 (m, 4H, CH₂CO), 4.15 (m, 2H, NCH₂), 6.99–7.25 (m, 8H, Ar).

1,2-Bis[(2-fluoro-6-chlorophenyl)acetyl]pyrazolidine **8e**: yield 91% (from **1a**), R_f 0.36 (ethyl acetate), mp 111–112 °C. ¹H NMR (CDCl₃) δ: 2.12 (q, 2H, CCH₂C, ²J 18 Hz, ³J 9 Hz), 3.13 (m, NCH₂), 4.05 (m, 4H, CH₂CO), 4.38 (m, 2H, NCH₂), 7.02 (t, 2H, Ar), 7.22 (d, 4H, Ar).

1,2-Dibenzoylpyrazolidine **8f**: yield 84% (from **1a**), mp 145–146 °C (lit., 18 mp 146–147 °C).

1,2-Bis(4-nitrobenzoyl)pyrazolidine **8g**: yield 76% (from **1a**), $R_{\rm f}$ 0.48 (ethyl acetate–n-heptane, 5:1), mp 241–243 °C. 1 H NMR (CDCl₃) δ: 2.35 (m, 2H, CCH₂C), 3.55 (br. s. 4H, NCH₂), 7.1, 8.5 (2d, 8H, Ar). 13 C NMR (CDCl₃) δ: 24.3 (CCC), 48.5 (br. s, NCH₂), 123, 129, 140, 148 (Ar), 167 (CO). IR (ν /cm⁻¹): 708, 720, 840, 860, 1012, 1112, 1144, 1240, 1292, 1316, 1396, 1492, 1604, 1648. MS, m/z: 370 (M $^{+}$), 220, 150, 104

2,3-Dihydro-1H-pyrazolo[1,2-b]phthalazine-5,10-dione **8h**: yield 26% (from **1a**), mp 206–208 °C (lit., 19 mp 205–206 °C).

1-(4-Methylphenylsulfonyl)-2-pyrazoline **10a**: yield 23% (from **1a**), $R_{\rm f}$ 0.5 (ethyl acetate–n-heptane, 3:5), mp 167–168 °C. ¹H NMR (CDCl₃) δ: 2.4 (s, 3H, Me), 2.75 (t, 2H, =CCH₂C), 3.5 (t, 2H, NCH₂), 7.0 (s, =CH), 7.3, 7.75 (2d, Ar). ¹³C NMR (CDCl₃) δ: 21.5 (Me), 34.13 (=CCC), 45.49 (NC), 128, 129.5, 131.0, 144.5 140, 148 (Ar), 150.2 (=C). IR (ν /cm⁻¹): 708, 732, 824, 928, 980, 1100, 1164, 1292, 1352, 1596.

1-(4-Fluorophenylsulfonyl)-2-pyrazoline **10b**: yield 78% (from **1a**), $R_{\rm f}$ 0.21 (ethyl acetate–n-heptane, 1:5), mp 161–162 °C. $^{\rm l}$ H NMR (CDCl₃) δ : 2.75 (t, 2H, =CCH₂C), 3.5 (t, 2H, NCH₂), 7.0 (s, =CH), 7.2, 7.9 (2d, Ar). IR (ν /cm⁻¹): 708, 732, 824, 928, 980, 1100, 1164, 1292, 1352, 1596.

1-(4-Bromophenylsulfonyl)-2-pyrazoline **10c**: yield 22% (from **1a**), $R_{\rm f}$ 0.82 (ethyl acetate–n-heptane, 2:3), mp 169–171 °C. $^{\rm l}$ H NMR (CDCl $_{\rm 3}$) δ: 2.78 (t, 2H, =CCH $_{\rm 2}$ C), 3.5 (t, 2H, NCH $_{\rm 2}$), 7.0 (s, =CH), 7.7, 7.85 (2 d, Ar). IR (ν /cm $^{\rm -1}$): 704, 748, 828, 928, 980, 1008, 1168, 1280, 1356, 1572, 1596.

Scheme 2 Reagents and conditions: i, toluene, -15 °C \rightarrow 20 °C, 3 h; ii, CH₂Cl₂/H₂O, NaOH, -5 °C \rightarrow 20 °C, 5 h.

analogy with the formation of 1,2-bis(arylsulfonyl)pyrazolidines **11**. However, under the action of inorganic bases, arylsulfinic acids split off as sodium salts resulting in pyrazoline derivatives **10** (Scheme 3). The similar splitting of arylsulfinic acids is known in the synthesis of other heterocycles, for example 1,2,3-triazol-4-ine derivatives.¹⁷

The structures of the previously unknown compounds were established using elemental analysis and standard spectroscopy characteristics (IR, ¹H, ¹³C NMR and mass spectra). For compound **10a**, it was supplemented by X-ray diffraction analysis.§

According to XRD, the five-membered ring in 10a has an envelope conformation with the deviation of the C(5) atom from the plane of the rest ring atoms by 0.41 Å (Figure 1). The N(1) atom is characterised by a pyramidal configuration with the sum of bond angles equal to 341.6(1)°. Note that the electron lone pair (Lp) of the N(1) atom is antiperiplanar to the S(1)–C(6) bond [the pseudotorsion angle LpN(1)S(1)C(6)is 174.6°]. Thus, we can assume the presence of anomeric interaction of N(1) Lp with S(1)–C(6) σ -antibonding orbital (Lp- σ^* interaction). The plane of a phenyl ring is almost perpendicular to the S(1)-N(1) bond with the torsion angle N(1)S(1)C(6)C(11) equal to 83.3°. The high resolution of experimental data makes it possible to perform a detailed analysis of charge density distribution $[\rho(r)]$ in the crystal of 10a. As one can see from the deformation electron density (DED) map in the plane of N(1)S(1)C(6) atoms the Lp [the maxima of DED in the vicinity of the N(1) atom] is almost parallel to the area of DED depletion in the vicinity of the C(6)–C(11) bond. Thus, the presence of the Lp- σ^* interaction in **10a** was demonstrated independently. To investigate the charge distribution in the

Me Me ArSO₂Cl
$$\frac{9}{1}$$
 $\frac{9}{1}$ $\frac{9 \cdot 1a = 2 : 1}{11}$ $\frac{10a \text{ Ar} = 4-\text{MeC}_6\text{H}_4}{10b \text{ Ar} = 4-\text{FC}_6\text{H}_4}$ $\frac{10c \text{ Ar} = 4-\text{FC}_6\text{H}_4}{10c \text{ Ar} = 4-\text{FC}_6\text{H}_4}$

Scheme 3 Reagents and conditions: i, CH_2Cl_2/H_2O , NaOH, -5 °C \rightarrow \rightarrow 20 °C, 5 h.

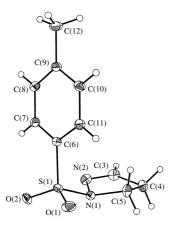
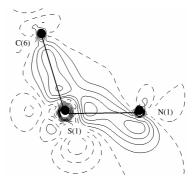


Figure 1 The general view of a molecule of 10a. Selected bond lengths (Å): S(1)–O(2) 1.4327(5), S(1)–O(1) 1.4386(5), S(1)–N(1) 1.6608(4), S(1)–C(6) 1.7544(4), N(1)–N(2) 1.4218(6), N(1)–C(5) 1.4864(6), N(2)–C(3) 1.2837(8), C(3)–C(4) 1.4959(9); bond angles (°): O(2)–S(1)–O(1) 119.99(3), O(2)–S(1)–N(1) 107.02(3), O(1)–S(1)–N(1) 103.82(2), O(2)–S(1)–C(6) 109.07(3), O(1)–S(1)–C(6) 108.72(2), N(1)–S(1)–C(6) 107.49(2), N(2)–N(1)–C(5) 109.19(4), N(2)–N(1)–S(1) 113.69(3), C(5)–N(1)–S(1) 118.75(3), C(3)–N(2)–N(1) 106.93(5).

crystal of **10a**, we determined the atomic basins (Ω) surrounded by a zero-flux surface and integrated $\rho(r)$ over Ω . The charges obtained according to this procedure were 1.62, -0.75 and -0.28 e for S(1), N(1) and N(2), respectively.


Thus, a new simple approach to the synthesis of 1-mono- and 1,2-diacylpyrazolidines, **3** and **8**, respectively, was offered based on the interaction of easy-to-synthesise 1,5-diazabicyclo[3.1.0]-hexanes **1** with 0.5 or 2 mol of arylacetyl or aroyl chlorides **4**. The reaction of compounds **1** with 2 mol of arylsulfonyl chlorides resulted in 1-arylsulfonyl-2-pyrazolines **10**.

This work was supported by the Russian Foundation for Basic Research (grant no. 04-03-32799).

§ X-ray diffraction analysis. Crystals of **10a** (C₁₀H₁₂N₂O₂S, M = 224.29) are monoclinic, space group $P2_1/c$, at 100(2) K: a = 7.4472(10), b = 17.8933(4) and c = 8.3936(2) Å, β = 112.4550(7)°, V = 1033.68(4) ų, Z = 4, $d_{\rm calc}$ = 1.441 g cm⁻³, μ (MoK α) = 0.294 cm⁻¹, F(000) = 472. Intensities of 47405 reflections were measured with a Bruker AXS Smart 1000 CCD diffractometer and 8380 independent reflections [$R_{\rm int}$ = 0.0248] were used in further refinement. The refinement converged to wR_2 = 0.0923 and GOF = 1.000 for all independent reflections [R_1 = 0.0335 was calculated against F for 7062 observed reflections with I > 2 σ (I)]. All calculations were performed using SHELXTL PLUS 5.0.

Atomic coordinates, bond lengths, bond angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). These data can be obtained free of charge *via* www.ccdc.cam.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or deposit@ccdc.cam.ac.uk). Any request to the CCDC for data should quote the full literature citation and CCDC reference number 638459. For details, see 'Notice to Authors', *Mendeleev Commun.*, Issue 1, 2007.

The multipole refinement was carried out for **1** within the Hansen–Coppens formalism²⁰ using the XD program package.²¹ Before the refinement, C–H were normalised to 1.08 Å. The level of multipole expansion was octopole for carbon, nitrogen, oxygen and sulfur atoms and dipole for hydrogen atoms. The refinement was carried out against F and converged to R = 0.0251, wR = 0.0244 and GOF = 1.1431 for 7266 merged reflections with $I > 3\sigma(I)$. All bonded pairs of atoms satisfy the Hirshfeld rigid-bond criteria.²² The average difference of the mean square displacement amplitudes along the bond was 6×10^{-4} Å². The residual electron density was no more than 0.135 eÅ⁻³. Analysis of topology of the $\rho(r)$ function was carried out using the WINXPRO program package.²³

Figure 2 A section of DED in the N(1)S(1)C(6) plane. The contours are drawn with a 0.1 eÅ $^{-3}$ step; the negative contours are dashed.

References

- 1 L. N. Jungheim and S. K. Sigmund, J. Org. Chem., 1987, 52, 4007.
- 2 L. N. Jungheim, Tetrahedron Lett., 1989, 30, 1889.
- 3 M. J. Laufersweiler, T. A. Brugel, M. P. Clark, A. Golebiowski, R. G. Bookland, S. K. Laughlin, M. P. Sabat, J. A. Townes, J. C. VanRens, B. De, L. C. Hsieh, S. A. Heitmeyer, K. Juergens, K. K. Brown, M. J. Mekel, R. L. Walter and M. J. Janusz, *Bioorg. Med. Chem. Lett.*, 2004, 14, 4267.
- 4 M. P. Clark, S. K. Laughlin, M. J. Laufersweiler, R. G. Bookland, T. A. Brugel, A. Golobiowski, M. P. Sabat, J. A. Townes, J. C. VanRens, J. F. Djung, M. G. Natehus, B. De, L. C. Hsieh, S. C. Xu, R. L. Walter, M. J. Mekel, S. A. Heitmeyer, K. K. Brown, K. Juergens, Ye. O. Taiwo and M. J. Janusz, *J. Med. Chem.*, 2004, 47, 2724.
- 5 D. T. Fosbenner, R. Liu and M. L. Moore, WO 2006/094003, 08.09.2006.
- 6 J. Elguero, in Comprehensive Heterocyclic Chemistry, eds. A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, vol. 5, p. 169.
- 7 R. J. Crawford, A. Mishra and R. J. Dummel, J. Am. Chem. Soc., 1966, 88, 3959.
- 8 L. A. Banuelos, P. Cuadrado, A. M. Gonzalez-Nogal, I. Lopez-Solera, F. J. Pulido and P. R. Raithby, *Tetrahedron*, 1996, **52**, 9193.
- P. Cuadrado, A. M. Gonzalez-Nogal and S. Martinez, *Tetrahedron*, 1997, 53, 8585.
- 10 R. J. Crawford and A. Mishra, J. Am. Chem. Soc., 1965, 87, 3768.
- 11 B. B. Snider, R. S. E. Conn and S. Sealfon, J. Org. Chem., 1979, 44, 218.
- 12 D. I. Sipkin, PhD Thesis, St. Petersburg University, 2002.
- 13 Yu. B. Koptelov, A. P. Molchanov and R. R. Kostikov, Zh. Org. Khim., 2000, 36, 1056 (Russ. J. Org. Chem., 2000, 36, 1025).
- 14 A. V. Shevtsov, V. V. Kuznetsov, A. A. Kislukhin, V. Yu. Petukhova, Yu. A. Strelenko, K. A. Lyssenko and N. N. Makhova, J. Heterocycl. Chem., 2006, 43, 881.
- 15 G. V. Shustov, S. N. Denisenko, I. I. Chervin, N. L. Asfandiarov and R. G. Kostyanovsky, *Tetrahedron*, 1985, 41, 5719.
- 16 H. Borme, E. Mundlos and O. E. Herboth, *Chem. Ber.*, 1957, **90**, 2003.
- 17 G. Beck and D. Gunter, Chem. Ber., 1973, 106, 2758.
- 18 E. L. Buhle, A. M. Moore and F. Y. Wiselogle, J. Am. Chem. Soc., 1947, 65, 29.
- 19 A. Csampai, K. Koermendy and F. Ruff, Tetrahedron, 1991, 47, 4457.
- 20 N. K. Hansen and P. Coppens, Acta Crystallogr., 1978, A34, 909.
- 21 T. S. Koritsansky, S. T. Howard, T. Richter, P. Macchi, A. Volkov, C. Gatti, P. R. Mallinson, L. J. Farrugia, Z. Su and N. K. Hansen, XD A Computer Program Package for Multipole Refinement and Topological Analysis of Charge Densities from Diffraction Data, 2003.
- 22 F. L. Hirshfeld, Acta Crystallogr., 1976, A32, 239.
- 23 (a) A. Stash and V. Tsirelson. WinXrpo, A Program for Calculation of the Crystal and Molecular Properties Using the Model Electron Density, 2001, further information available at http://xray.nifhi.ru/wxp/; (b) A. Stash and V. J. Tsirelson, J. Appl. Crystallogr., 2002, 35, 371.

Received: 21st November 2006; Com. 06/2827